§ 1. Предмет тригонометрии

Слово «тригонометрия» искусственно составлено из греческих слов: «тригонон» — треугольник и «метрезис» — измерение (соответствующим русским термином было бы «треугольникомерие»). Основная задача тригонометрии состоит в решении треугольников т. е. в вычислении неизвестных величин треугольника по данным значениям других его величин. Так, в тригонометрии решают задачу о вычислении углов треугольника по данным его сторонам, задачу о вычислении сторон треугольника — по площади и двум углам и т.д. Так как любую вычислительную задачу геометрии можно свести к решению треугольников, то тригонометрия охватывает всю планиметрию и стереометрию и широко применяется во всех областях естествознания и техники.

Учение о решении сферических треугольников называется сферической тригонометрией; в противоположность этому учение о решении обычных треугольников называют плоской или прямолинейной тригонометрией.

Углы произвольного треугольника нельзя связать непосредственно с его сторонами с помощью алгебраических соотношений. Поэтому в тригонометрии вводятся, кроме самих углов, еще новые тригонометрические величины (их перечень и определения см. § 5). Эти величины уже можно связать со сторонами треугольника простыми алгебраическими соотношениями. С другой стороны, по данному углу можно вычислить соответствующее значение тригонометрической величины, и обратно.

Значение каждой тригонометрической величины изменяется с изменением угла, которому она соответствует: другими словами, тригонометрическая величина есть функция угла (VI, § 2). Отсюда наименование: тригонометрические функции.

Между различными тригонометрическими функциями существуют важные зависимости. Использование их позволяет сокращать и облегчать вычисления. Часть тригонометрии, посвященная изучению этих соотношений, называется гониометрией, т.е. «угломерием» («гонйа» — по-гречески «угол»).

Добавить комментарий